The Microwave Syndrome: A Preliminary Study in Spain

Enrique A. Navarro *Corresponding
J. Segura
M. Portolés
Claudio Gómez-Perretta de Mateo

Departamento de Física Aplicada,
Universitat de València
46100, Burjassot, València, Spain

Centro de Investigación, Hospital Universitario LA FE
46009, València, Spain
The Microwave Syndrome: A Preliminary Study in Spain

Enrique A. Navarro ¹, Jaume Segura ¹, Manuel Portolés ², and Claudio Gómez-Perretta de Mateo ²

¹ Departamento de Física Aplicada, Universitat de València 46100, Burjassot, València, Spain
² Centro de Investigación, Hospital Universitario LA FE 46009, València, Spain

Electromagnetic Biology and Medicine
(formerly Electro- and Magnetobiology)

Abstract
A health survey was carried out in Murcia, Spain, in the vicinity of a Cellular Phone Base Station working in DCS-1800 MHz. This survey contained health items related to "microwave sickness" or "RF syndrome." The microwave power density was measured at the respondents' homes. Statistical analysis showed significant correlation between the declared severity of the symptoms and the measured power density. The separation of respondents into two different exposure groups also showed an increase of the declared severity in the group with the higher exposure.

Keywords
Public health, Cellular phone, Base stations, Microwave sickness

Introduction
The hypothesis that radiofrequency (RF) exposure might produce health damage has been analyzed mainly from several epidemiological studies. Insomnia, cancer, leukemia in children, and brain tumors are the clinical entities more frequently described (Dolk et al., 1997; Hocking et al., 1996; Maskarinec et al., 1994; Minder and Pfluger, 2001; Selvin et al., 1992). Moreover, the clinical consequences of being exposed to microwave radiation such as radar has been evaluated from military and occupational studies.
A specific symptomatology, linked to radar exposure at low levels of RF, has been termed “microwave sickness” or “RF syndrome.” (Johnson-Liakouris, 1998) With few exceptions, functional disturbances of the central nervous system have been typically described as a kind of radiowave sickness, neurasthenic or asthenic syndrome. Symptoms and signs include headache, fatigue, irritability, loss of appetite, sleepiness, difficulties in concentration or memory, depression, and emotional instability. This clinical syndrome is generally reversible if RF exposure is discontinued.

Another frequently described manifestation is a set of labile functional cardiovascular changes including bradycardia, arterial hypertension, or hypotension (Johnson-Liakouris, 1998). This form of neurocirculatory asthenia is also attributed to nervous system influence. More serious but less frequent neurologic or neuropsychiatric disturbances have occasionally been described as a diencephalic syndrome (Johnson-Liakouris, 1998). All these disturbances following low level exposures (of the order of microwatts/cm²) have been reported for many years from Eastern Europe. The exposures have been mainly low level and long term (Goldsmith, 1997; Johnson-Liakouris, 1998).

Also, several articles have found biological dysfunction at very low density of radiation without temperature elevation, favoring the hypothesis of nonthermal biological effects and pointing to the probability of clinical dysfunction below the actual standard of safety norms in the European Union (Arber and Lin, 1985; Baranski, 1972; Byus et al., 1988; Daniells et al., 1998; de Pomerai et al., 2000; D’Inzeo et al., 1998; Dutta et al., 1989; Kues et al., 1992; Lai and Singh, 1995-1997; Lai et al., 1984, 1989; Malyapa et al., 1998; Sanders et al., 1985; Sarkar et al., 1994; Stagg et al., 1997; Wachtel et al., 1975).

Low levels of RF are found around the GSM-DCS cellular phone Base Stations (BS), where antennas are usually located on the roofs or in the top of tall towers. GSM-DCS cellular phones use pulsed microwaves. These signals have a spectral similarity to radar signals. The spectral power distribution of pulsed signals includes low frequency harmonics. Typical pulse duration time ranges from 100 msec to 0.050 µsec in radar, and 576.9 usec for each slot of GSM-DCS.

From this point of view, the hypothesis of a “microwave sickness” in the neighborhood of the GSM-DCS Base Stations is analyzed in this study. The present analysis tries to evaluate if there is some statistical justification to the complaints and related dysfunction locally associated with RF exposure from the GSM-DCS Base Stations, as has been found in previous studies (Santini et al., 2001, 2002a&b).
Materials and Method

A local team, specially trained for this work, delivered the questionnaires in La Ñora, a town of Murcia in Spain during January 2001. This was always introduced to respondents as a part of a study to evaluate the impact on the area of the cellular phone Base Stations (GSM-DCS). In general, the people were quite prepared to cooperate (the ratio of returned to delivered was about 70%). The questionnaire was a Spanish language adaptation of the Santini publication (Santini et al., 2001). This was composed of 25 different items mainly concerning health information about the respondents.

The respondents scored and marked from 0 to 3 the presence of the suffered health dysfunction: 0 never, 1 sometimes, 2 often, 3 very often.

The asked symptoms were those described in earlier studies of the microwave syndrome: fatigue, irritability, headache, nausea, appetite loss, insomnia, depression, discomfort, difficulty in concentration, memory loss, skin alterations, visual dysfunction, auditory dysfunction, dizziness, gait difficulty, and cardiovascular alterations.

Questions included demographic data: address, sex, and age, distance to the antennas (distance in meters to the Base Station), exposure time in days/weeks, hours/days, and time from the beginning of the emissions. The questionnaire also collected information about proximity to power lines, and the use of personal computer and cellular phone.

More than 5% of the population of La Ñora (around 1900 habitants) answered the questionnaire. Questionnaires from people with a history of deep psychological or neurological disease were excluded. Finally, 101 surveys were considered valid.

The survey was supplemented with electric field measurements, conducted February 24, 2001, and March 10, 2001 (Saturday). Measurements were carried out from 11:00 hr to 19:00 hr each day, in the bedrooms of each respondent. More measurements were carried out in the streets during working days and weekends, to check the possible variability in time of the measurements. The measurements were individually added to the survey of each respondent.

A portable broadband (1 MHz–3 GHz) electric field meter (EFM) was used. The EFM was hand-oriented in order to measure the maximum field strength above the bed. The electric field in each room presented a standing wave pattern because of reflection of the waves from the walls and metallic structures such as windows and metallic furniture. Therefore the EFM was held around 1 m from the walls, 1.2 m above the ground, and was moved around a
circle of 25 cm of radius, orienting the antenna to get the maximum electric field strength.

The EFM was calibrated in the anechoic chamber of the University of Valencia with a standard measurement set-up using a network analyzer HP-8510C.

To check the intensity of TV and radio channels, as well as the number of working channels of the GSM-DCS BS, measurements of the spectral power density were carried out with a probe antenna and a portable spectrum analyzer.

The TV and radio channels maintained their intensities during the measurements, but the cellular phone channels presented dramatic differences in amplitude from channel to channel, some of them going on and off the air at random times.

The probe was mounted on a linen phenolic tripod about 1.2 m above the ground. The location of the probe was the same on both days, on a hill next to the town, 20 m from the BS. With the spectrum analyzer we scanned the GSM and DCS bands, at the beginning of the journey, taking the average over a period of 6 min. The measurement of the spectrum was similar on both days, having a difference in the peak estimation (carriers of the channels) of about 1 dB.

Results

The respondents were 47% male and 53% female, with a wide age range: 15–25 years (22%), 26–35 years (22%), 36–45 years (19%), 46–55 years (11%), 56–65 years (13%), and over 65 years (13%).

The exposure time, explained as the time spent in the vicinity of the BS, was more than 6 hr per day, 7 days a week, for 95% of the respondents. The bedroom was where the electric field was measured.

Concerning the attitude of the respondents about the use of cellular phone: 24% of them declared themselves to be active users of mobile GSM-DCS phone for more than 20 min per day.

The measurements were very low compared with European safety guidelines 1999/519/EC DOCE 30/7/99 (1999/519/EC). Actually the levels were lower than 0.2 µW/cm². The Spanish legislation established a maximum limit of 450 µW/cm² at a single frequency (900 MHz), the same as the European safety guidelines 1999/519/EC DOCE 30/7/99. This is one of the characteristics of the present work: the low levels of RF exposures.

We divided the surveys into two groups: One group with high exposure, averaging 0.11 µW/cm², consisted of 47 respondents. These respondents declared themselves to be
living less than 150 m from the BS. The second group, with an average exposure of 0.01 µW/cm2, were at a distance greater than 250 m.

Although both groups were obviously at different distances from the BS, there was still the risk of a distance perception that could influence the survey.

Table 1 shows the average declared severity in both groups.

Table 1. Average Severity of the Reported Symptoms in Two Groups Having Different Exposure: Higher Exposure with Average Power Density 0.11 µW/cm2 (Distance < 150 mts), and Lower Exposure with Average Power Density 0.01 µW/cm2 (Distance > 250 mts).

<table>
<thead>
<tr>
<th></th>
<th>Respondents</th>
<th>N = 54</th>
<th>N = 47</th>
<th>P value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Average power density µW/cm2</td>
<td></td>
<td>0.11 ± 0.19</td>
<td>0.01 ± 0.04</td>
<td>< 0.001</td>
</tr>
<tr>
<td>Distance to BS</td>
<td></td>
<td>< 150 m (107 ± 57 m)</td>
<td>> 250 m (284 ± 24 m)</td>
<td>< 0.001</td>
</tr>
<tr>
<td>Average value of reported severity</td>
<td>Fatigue</td>
<td>1.11 ± 1.13</td>
<td>0.74 ± 1.07</td>
<td>n.s.</td>
</tr>
<tr>
<td></td>
<td>Irritability</td>
<td>1.56 ± 1.08</td>
<td>1.04 ± 1.02</td>
<td>< 0.05</td>
</tr>
<tr>
<td></td>
<td>Headache</td>
<td>2.17 ± 0.86</td>
<td>1.53 ± 1.00</td>
<td>< 0.001</td>
</tr>
<tr>
<td></td>
<td>Nausea</td>
<td>0.93 ± 0.99</td>
<td>0.53 ± 0.88</td>
<td>< 0.05</td>
</tr>
<tr>
<td></td>
<td>Appetite loss</td>
<td>0.96 ± 1.03</td>
<td>0.55 ± 0.88</td>
<td>< 0.05</td>
</tr>
<tr>
<td></td>
<td>Discomfort</td>
<td>1.41 ± 1.11</td>
<td>0.87 ± 0.97</td>
<td>< 0.02</td>
</tr>
<tr>
<td></td>
<td>Gait difficulty</td>
<td>0.68 ± 0.93</td>
<td>0.94 ± 1.07</td>
<td>n.s.</td>
</tr>
</tbody>
</table>
A possible relationship between the declared severity of the symptom and the microwave power density was explored. A mathematical model with logarithmic dependence on the measured electric field (EFM) was used. The SPSS statistical package, with different regression methods, was used for this analysis. The results for the correlation coefficient and statistical significance are presented in Table 2. Correlation coefficients were grouped in four sections: asthenic, diencephalic, sensorial, and cardiovascular symptoms.

Table 2. Correlation Coefficient Between Severity of the Reported Symptoms and the Logarithm of the Measured Electric Field.

<table>
<thead>
<tr>
<th>Symptom Category</th>
<th>Correlation Coefficient</th>
<th>p value</th>
</tr>
</thead>
<tbody>
<tr>
<td>ASTHENIC symptoms</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Fatigue</td>
<td>0.438</td>
<td>< 0.001</td>
</tr>
<tr>
<td>Irritability</td>
<td>0.515</td>
<td>< 0.001</td>
</tr>
<tr>
<td>Headache</td>
<td>0.413</td>
<td>< 0.001</td>
</tr>
<tr>
<td>Nausea</td>
<td>0.354</td>
<td>< 0.001</td>
</tr>
<tr>
<td>Appetite loss</td>
<td>0.485</td>
<td>< 0.001</td>
</tr>
<tr>
<td>Discomfort</td>
<td>0.544</td>
<td>< 0.001</td>
</tr>
<tr>
<td>Gait difficulty</td>
<td>0.127</td>
<td>n.s.</td>
</tr>
<tr>
<td>DIENCEPHALIC symptoms</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Sleep disturbance</td>
<td>0.413</td>
<td>< 0.001</td>
</tr>
<tr>
<td>Depression</td>
<td>0.400</td>
<td>< 0.001</td>
</tr>
</tbody>
</table>
Difficulty in concentration 0.469 < 0.001
Memory loss 0.340 < 0.001
Dizziness 0.357 < 0.001

SENSORIAL symptoms
Skin alterations 0.358 < 0.001
Visual dysfunction 0.347 < 0.001
Auditory dysfunction 0.163 n.s.

CARDIOVASCULAR symptoms
Cardiovascular alterations 0.290 < 0.01

Second Column is the Statistical Significance (p) of the Correlation Coefficient.

Discussion
It is interesting to compare the severity of the reported symptoms between both groups of Table 1: more severe symptoms were reported in the first group. The first group (< 150 m from BS) was exposed to a mean EMF power density 10 times higher than the second group (> 250 m from BS). Asthenic syndrome was 42% higher in the first group, diencephalic syndrome was 55% higher in the first group, sensorial alterations were 25% higher in the first group, and cardiovascular alterations 55% higher as well.

However, the use of mobile phones was 30% in the first group and 17% in the second group. Use of the personal computer was 16% in the first group and 1% in the second group. Therefore, these differences could bias the health response. The use of the mobile cellular phone implies a considerably higher exposure of the head to microwaves during the phone call, roughly 5 mW/cm², 10,000 times higher than the maximum EMF exposure attributed to the BS. Moreover, the symptomatic response could be influenced by personal or human idiosyncrasy. The exposure to radiation from the computer screen occurs at extremely low frequencies and is under 0.3 µT, at normal distances. It is therefore not considered significant, but will be the subject of a future work.

Results from Table 2 indicate the correlation between severity of the reported symptoms and the logarithm of the measured electric field (EFM) with p < 0.001. We find that discomfort (0.544), irritability (0.515), and appetite loss (0.485) are the most relevant symptoms correlated with exposure intensity. Others symptoms, fatigue (0.438), headache (0.413), difficulty in concentrating (0.469), and sleep disturbances (0.413), also show a significant correlation with exposure intensity. However, other symptoms such as auditory dysfunction, gait difficulty, and cardiovascular, have a lower correlation coefficient, but significant p < 0.01.
However, the most interesting aspect of our results is the significance of the dependence between both variables: The declared severity of the symptom and the logarithm of the measured electric field. Another interesting observation is that four of the highly correlated symptoms (Table 2) such as headache, sleep disturbances, concentration difficulty, and irritability also show the most relevant differences between both groups and the highest values in the clinical scale, 2.17, 1.94, 1.56, and 1.56 respectively (Table 1).

The validity and interpretation of the results of Tables 1 and 2 must be analyzed in the proper context, by comparison with results from other researchers, or with our results from previous similar surveys. Actually there are no studies similar to the presented in this communication. However, our work shows a similarity in procedure and results with previous surveys on noise annoyance. Results for the correlation coefficients (Table 2) are similar to those obtained in previous social surveys on noise annoyance, where the maximum correlation coefficient was around 0.35 (Schultz, 1978).

If there is a casual relationship between severity of the symptoms and the measured electric field, it may be that the logarithmic approach is still too approximate, and a more elaborate model would be convenient. The logarithmic model is extended in the analysis of noise annoyance, since the devices used in noise measurements use logarithmic scales (dB). Moreover, the used measurement was a spatial-point, timepoint, measurement. This would most likely be an improvement in correlation for EMF average levels during days or weeks. However, the existence of appropriate instrumentation is a limitation.

It is worth pointing out that noise is a recognized environmental pollutant, and the social surveys on noise annoyance address its subjective response. Although noise is perceived by the senses, the same is not true for the electromagnetic field. Therefore biasing is less likely in the present study, and the results are probably more objective than in the surveys on noise annoyance.

Trying to find comparisons between our results and previous work, we can claim a strong similarity with the Lilienfeld study (Johnson-Liakouris, 1998), which showed a dose-response relationship between various neurological symptoms and microwave exposure. These symptoms were grouped under the name “microwave syndrome” or “radiofrequency radiation sickness.”

The present results demonstrate a significant correlation between several symptoms of what is called microwave sickness and the microwave power density associated with the Base Station located on a hill at the edge of the town. The severity of the symptoms weakens for people who live far away, at a distance greater than 250 m from the main EMF source and at a power density lower than 0.1 µW/cm².
As there is a significant difference between both groups in terms of the irradiated power density, a hypothetical relationship between the DCS emission and the severity of symptoms may exist.

There is a large and coherent body of evidence of biological mechanisms that support the conclusion of a plausible, logical, and causal relationship between RF exposure and neurological disease. Hence it is possible that cell sites are causing adverse health effects. Public health surveys of people living in the vicinity of cell site BSs should be carried out immediately, and continued over the next 2 decades. Prompt effects such as miscarriage, cardiac disruption, sleep disturbance, and chronic fatigue could well be early indicators of adverse health effects.

This is the first social survey concerning the microwave syndrome carried out in Spain, and is a preliminary study. Future surveys in another geographical locations are underway. More research and comparison of statistical results from different areas would be useful.

At present, the electromagnetic/microwave power density is not a recognized environmental pollutant. The reported results are obtained from one of the first social surveys on the health of the population living in the vicinity of a Base Station of GSM-DCS cellular phone.

References

Arber S. L., Lin J. C., Microwave-induced changes in nerve cells: effects of modulation and temperature, Bioelectromagnetics, 6 (1985) 257-270.

de Pomerai D., Daniells C., David H., Allan J., Duce I., Mutwakil M., Thomas D., Sewell P.,

Lai H. , Horita A. , Chou C. K. , Guy A. W., Effects of low-level microwave irradiation on amphetamine hyperthermia

Co-Editors

Abraham R. Liboff, Ph.D.
Professor Emeritus
Department of Physics
Oakland University
Rochester, MI 48309, USA
E-mail: arliboff@aol.com

Joseph R. Salvatore, M.D.
VA Medical Center
Division of Hematology/Oncology
650 E. Indian School Road
Phoenix, AZ 85012, USA
Tel: 602-277-5551 ext. 7713
Fax: 602-222-6591
E-mail: joseph.salvatore@med.va.gov

Editorial Board

<table>
<thead>
<tr>
<th>Name</th>
<th>Institution</th>
<th>Location</th>
<th>E-mail</th>
</tr>
</thead>
<tbody>
<tr>
<td>W. R. Adey, MD, Ph.D</td>
<td>Pettis Memorial VA Hospital Research Service 151</td>
<td>Loma Linda, CA 92357 USA</td>
<td></td>
</tr>
<tr>
<td>R. O. Becker, MD</td>
<td>Box 278</td>
<td>Star Route Lowville, NY USA</td>
<td></td>
</tr>
<tr>
<td>I. Y. Belyaev, Ph.D</td>
<td>Department of Molecular Genome Research</td>
<td>Stockholm University S-106-91 Stockholm, Sweden</td>
<td></td>
</tr>
<tr>
<td>R. Cadossi, MD</td>
<td>IGEA Via Parmenide 10/A</td>
<td>41012 Carpi (MO), Italy</td>
<td></td>
</tr>
<tr>
<td>V. Cané, MD</td>
<td>Department of Medical Oncological and Radiological Services Policlinico Via del Pozzo 71 14100 Modena, Italy</td>
<td></td>
<td></td>
</tr>
<tr>
<td>J. Dobson, Ph.D</td>
<td>Department of Biomedical Engineering and Medical Physics Centre for Science and Technology in Medicine Keele University Thronburrow Drive, Hartsill Stoke-on-Trent, ST4 7QB United Kingdom</td>
<td></td>
<td></td>
</tr>
<tr>
<td>K. A. Jenrow, Ph.D</td>
<td>Department of Neurosurgery Henry Ford Hospital</td>
<td>Detroit, MI 48202 USA</td>
<td></td>
</tr>
<tr>
<td>J. Juutilainen, Ph.D</td>
<td>Department of Environmental Sciences University of Kuopio P.O. Box 1627 SF-70211 Kuopio, Finland</td>
<td></td>
<td></td>
</tr>
<tr>
<td>E. Kovacs, Ph.D</td>
<td>Department of Biophysics Research Carol Davila University of Medicine and Pharmacy</td>
<td></td>
<td></td>
</tr>
<tr>
<td>A. A. Marino, Ph.D</td>
<td>Department of Orthopedic Surgery LSU Medical Center P.O. Box 33932 Shreveport, LA 71130</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>