Adverse biological effects or damage to health from Wi-Fi signals

woensdag, 16 september 2015 - Categorie: Onderzoeken

Bron: wifiinschools.org.uk/30.html
2015

Papers finding adverse biological effects or damage to health from Wi-Fi signals, Wi-Fi-enabled devices or Wi-Fi frequencies (2.4 or 5 GHz).


Papers listed are those where exposures are below the current ICNIRP guideline values. If the ICNIRP values were protective, we would not be seeing the damaging effects reported in the studies below. Children are exposed to Wi-Fi/2.45GHz in schools every day, around the world. Children are sitting with Wi-Fi-enabled tablet computers on their laps and up against their bodies for prolonged periods of time. The studies below support the claim that schools giving children wireless devices to use, or exposing them to Wi-Fi signals, are failing to safeguard the health, development or wellbeing of the young people for whom they are responsible.

Papers are in alphabetical order. A file of first pages, for printing, can be found here.

Wi-Fi/2.45GHz (44):

Akar A. et al., 2013. Effects of low level electromagnetic field exposure at 2.45 GHz on rat cornea.Int J Radiat Biol. 89(4): 243-249. www.ncbi.nlm.nih.gov/pubmed/23206266

Atasoy H.I. et al., 2013. Immunohistopathologic demonstration of deleterious effects on growing rat testes of radiofrequency waves emitted from conventional Wi-Fi devices. Journal of Pediatric Urology 9(2): 223-229. www.ncbi.nlm.nih.gov/pubmed/22465825

Avendaño C. et al., 2012. Use of laptop computers connected to internet through Wi-Fi decreases human sperm motility and increases sperm DNA fragmentation. Fertility and Sterility 97(1): 39-45. www.ncbi.nlm.nih.gov/pubmed/22112647

Aynali G. et al., 2013. Modulation of wireless (2.45 GHz)-induced oxidative toxicity in laryngotracheal mucosa of rat by melatonin. Eur Arch Otorhinolaryngol 270(5): 1695-1700. www.ncbi.nlm.nih.gov/pubmed/23479077

Ceyhan A.M. 2012. Protective effects of β-glucan against oxidative injury induced by 2.45-GHz electromagnetic radiation in the skin tissue of rats. Arch Dermatol Res 304(7): 521-527. www.ncbi.nlm.nih.gov/pubmed/22237725

Chaturvedi C.M. et al., 2011. 2.45GHz (CW) microwave irradiation alters circadian organization, spatial memory, DNA structure in the brain cells and blood cell counts of male mice, Mus musculus. Prog Electromag Res B 29: 23-42. www.jpier.org/PIERB/pierb29/02.11011205.pdf (Full paper).

Chou C.K. et al., 1992. Long-term, low-level microwave irradiation of rats. Bioelectromagnetics 13(6): 469–496. www.ncbi.nlm.nih.gov/pubmed/1482413

Ciftci Z.Z. et al., 2015. Effects of prenatal and postnatal exposure of Wi-Fi on development of teeth and changes in teeth element concentration in rats : Wi-Fi (2.45 GHz) and teeth element concentrations. Biol Trace Elem Res. 163(1-2): 193-201. www.ncbi.nlm.nih.gov/pubmed/25395122

Cig B. and Naziroglu M. 2015. Investigation of the effects of distance from sources on apoptosis, oxidative stress and cytosolic calcium accumulation via TRPV1 channels induced by mobile phones and Wi-Fi in breast cancer cells. Biochem Biophys Acta. Epub ahead of print. www.ncbi.nlm.nih.gov/pubmed/25703814

Dasdag S. et al., 2014. Effect of long-term exposure of 2.4 GHz radiofrequency radiation emitted from Wi-Fi equipment on testes functions. Electromagn Biol Med. 34(1): 37-42. www.ncbi.nlm.nih.gov/pubmed/24460421

Dasdag S. et al 2015. Effects of 2.4 GHz radiofrequency radiation emitted from Wi-Fi equipment on microRNA expression in brain tissue. Int J Radiat Biol. Epub ahead of print. www.ncbi.nlm.nih.gov/pubmed/25775055

Desmunkh P.S. et al., 2013. Detection of Low Level Microwave Radiation Induced Deoxyribonucleic Acid Damage Vis-a-vis Genotoxicity in Brain of Fischer Rats. Toxicol Int. 20(1): 19-24. www.ncbi.nlm.nih.gov/pubmed/23833433

Deshmukh P.S. et al., 2015. Cognitive impairment and neurogenotoxic effects in rats exposed to low-intensity microwave radiation. Int J. Toxicol. Epub ahead of print. www.ncbi.nlm.nih.gov/pubmed/25749756

Eser O., 2013. The effect of electromagnetic radiation on the rat brain: an experimental study. Turk Neurosurg. 23(6): 707-715. www.ncbi.nlm.nih.gov/pubmed/24310452

Ghazizadeh V. and Naziroglu M. 2014. Electromagnetic radiation (Wi-Fi) and epilepsy induce calcium entry and apoptosis through activation of TRPV1 channel in hippocampus and dorsal root ganglion of rats. Metab Brain Dis. 29(3): 787-799. www.ncbi.nlm.nih.gov/pubmed/24792079

Grigoriev Y.G. et al., 2010. Confirmation studies of Soviet research on immunological effects of microwaves: Russian immunology results. Bioelectromagnetics 31(8):589-602. www.ncbi.nlm.nih.gov/pubmed/20857454

Gumral N. et al., 2009. Effects of selenium and L-carnitine on oxidative stress in blood of rat induced by 2.45-GHz radiation from wireless devices. Biol Trace Elem Res. 132(1-3): 153-163. www.ncbi.nlm.nih.gov/pubmed/19396408

Gürler H.S. et al, 2014. Increased DNA oxidation (8-OHdG) and protein oxidation (AOPP) by Low level electromagnetic field (2.45 GHz) in rat brain and protective effect of garlic. Int. J. Radiat. Biol. 90(10): 892-896. www.ncbi.nlm.nih.gov/pubmed/24844368

Havas M. et al., 2010. Provocation study using heart rate variability shows microwave radiation from 2.4GHz cordless phone affects autonomic nervous system. European Journal of Oncology Library Vol. 5: 273-300. www.icems.eu/papers.htm?f=/c/a/2009/12/15/MNHJ1B49KH.DTL part 2.

Kesari K.K. et al., 2010. Mutagenic response of 2.45 GHz radiation exposure on rat brain. Int J Radiat Biol. 86(4): 334-343. www.ncbi.nlm.nih.gov/pubmed/20353343

Kesari K.K. et al., 2012. Pathophysiology of microwave radiation: effect on rat brain. Appl Biochem Biotechnol. 166(2): 379-388. www.ncbi.nlm.nih.gov/pubmed/22134878

Kumar S. et al., 2011. The therapeutic effect of a pulsed electromagnetic field on the reproductive patterns of male Wistar rats exposed to a 2.45-GHz microwave field. Clinics (Sao Paulo) 66(7): 1237-1245. www.ncbi.nlm.nih.gov/pubmed/21876981

Maganioti A. E. et al., 2010. Wi-Fi electromagnetic fields exert gender related alterations on EEG. 6th International Workshop on Biological Effects of Electromagnetic fields. Paper. www.istanbul.edu.tr/6internatwshopbioeffemf/cd/pdf/poster/WI-FI%20ELECTROMAGNETIC%20FIELDS%20EXERT%20GENDER.pdf

Margaritis L.H. et al., 2014. Drosophila oogenesis as a bio-marker responding to EMF sources. Electromagn Biol Med. 33(3): 165-189. www.ncbi.nlm.nih.gov/pubmed/23915130

Meena R. et al., 2014. Therapeutic approaches of melatonin in microwave radiations-induced oxidative stress-mediated toxicity on male fertility pattern of Wistar rats. Electromagn Biol Med. 33(2): 81-91. www.ncbi.nlm.nih.gov/pubmed/23676079

Misa-Augustiño M.J. et al., 2012. Electromagnetic fields at 2.45 GHz trigger changes in heat shock proteins 90 and 70 without altering apoptotic activity in rat thyroid gland. Biol Open 1(9): 831-839. www.ncbi.nlm.nih.gov/pubmed/23213477

Naziroğlu M. and Gumral N. 2009. Modulator effects of L-carnitine and selenium on wireless devices (2.45 GHz)-induced oxidative stress and electroencephalography records in brain of rat. Int J Radiat Biol. 85(8): 680-689. www.ncbi.nlm.nih.gov/pubmed/19637079

Nazıroğlu M. et al., 2012. 2.45-Gz wireless devices induce oxidative stress and proliferation through cytosolic Ca2+ influx in human leukemia cancer cells. International Journal of Radiation Biology 88(6): 449–456. www.ncbi.nlm.nih.gov/pubmed/22489926

Nazıroğlu M. et al., 2012b. Melatonin modulates wireless (2.45 GHz)-induced oxidative injury through TRPM2 and voltage gated Ca(2+) channels in brain and dorsal root ganglion in rat. Physiol Behav. 105(3): 683-92. www.ncbi.nlm.nih.gov/pubmed/22019785

Ozorak A. et al., 2013. Wi-Fi (2.45 GHz)- and mobile phone (900 and 1800 MHz)- induced risks on oxidative stress and elements in kidney and testis of rats during pregnancy and the development of offspring. Biol. Trace Elem. Res. 156(103): 221-29. www.ncbi.nlm.nih.gov/pubmed/24101576

Oksay T. et al., 2012. Protective effects of melatonin against oxidative injury in rat testis induced by wireless (2.45 GHz) devices. Andrologia doi: 10.1111/and.12044, Epub ahead of print. www.ncbi.nlm.nih.gov/pubmed/23145464

Papageorgiou C. C. et al., 2011. Effects of Wi-Fi signals on the p300 component of event-related potentials during an auditory hayling task. Journal of Integrative Neuroscience 10(2): 189-202. www.ncbi.nlm.nih.gov/pubmed/21714138

Paulraj R. and Behari J. 2006. Single strand DNA breaks in rat brain cells exposed to microwave radiation. Mutat Res. 596(1-2): 76-80. www.ncbi.nlm.nih.gov/pubmed/16458332

Paulraj R. and Behari J. 2006b. Protein kinase C activity in developing rat brain cells exposed to 2.45 GHz radiation. Electromagn Biol Med. 25(1): 61-70. www.ncbi.nlm.nih.gov/pubmed/16595335

Salah M.B. et al., 2013. Effects of olive leave extract on metabolic disorders and oxidative stress induced by 2.45 GHz WIFI signals. Environ Toxicol Pharmacol 36(3): 826-834. www.ncbi.nlm.nih.gov/pubmed/23994945

Sangun O. et al., 2015. The effects of long-term exposure to a 2450 MHz electromagnetic field on growth and pubertal development in female Wistar rats. Electromagn. Biol. Med. 34(1): 63-67. www.ncbi.nlm.nih.gov/pubmed/24460416

Senavirathna M.D., et al., 2014. Nanometer-scale elongation rate fluctuations in the Myriophyllum aquaticum (Parrot feather) stem were altered by radio-frequency electromagnetic radiation. Plant Signal Behav. 9(4): e28590. www.ncbi.nlm.nih.gov/pubmed/25764433

Shahin S. et al., 2013. 2.45 GHz Microwave Irradiation-Induced Oxidative Stress Affects Implantation or Pregnancy in Mice, Mus musculus. Appl Biochem Biotechnol 169: 1727–1751. www.ncbi.nlm.nih.gov/pubmed/23334843

Shahin S. et al., 2014. Microwave irradiation adversely affects reproductive function in male mouse, Mus musculus, by inducing oxidative and nitrosative stress. Free Radic Res. 48(5): 511- 525. www.ncbi.nlm.nih.gov/pubmed/24490664

Sinha R.K. 2008. Chronic non-thermal exposure of modulated 2450 MHz microwave radiation alters thyroid hormones and behavior of male rats. Int J Radiat Biol. 84(6): 505-513. www.ncbi.nlm.nih.gov/pubmed/18470749

Somosy Z. et al., 1991. Effects of modulated and continuous microwave irradiation on the morphology and cell surface negative charge of 3T3 fibroblasts. Scanning Microsc. 5(4): 1145-1155.http://www.ncbi.nlm.nih.gov/pubmed/1822036

Soran M.-L. et al., 2014. Influence of microwave frequency electromagnetic radiation on terpene emission and content in aromatic plants. J Plant Physiol. 171(15): 1436-1443. www.ncbi.nlm.nih.gov/pmc/articles/PMC4410321/pdf/emss-61504.pdf

Tök L. et al., 2014. Effects of melatonin on Wi-Fi-induced oxidative stress in lens of rats. Indian Journal of Opthalmology 62(1): 12-15. www.ncbi.nlm.nih.gov/pubmed/24492496

Türker Y. et al., 2011. Selenium and L-carnitine reduce oxidative stress in the heart of rat induced by 2.45-GHz radiation from wireless devices. Biol Trace Elem Res. 143(3): 1640-1650. www.ncbi.nlm.nih.gov/pubmed/21360060

A few more studies of similar microwave frequencies at low exposures (6V/m or below):

(Not comprehensive)

Balmori A. 2010. Mobile phone mast effects on common frog (Rana temporaria) tadpoles: the city turned into a laboratory. Electromagn. Biol. Med. 29(1-2):31-35. www.ncbi.nlm.nih.gov/pubmed/20560769

Erdinc O. O. et al., 2003. Electromagnetic waves of 900MHz in acute pentylenetetrazole model in ontogenesis in mice. Neurol. Sci. 24:111-116. www.ncbi.nlm.nih.gov/pubmed/14600821

Fesenko E. E. et al., 1999. Stimulation of murine natural killer cells by weak electromagnetic waves in the centimeter range. Biofizika 44:737–741. www.ncbi.nlm.nih.gov/pubmed/10544828

Fesenko E. E. et al., 1999. Microwaves and cellular immunity. I. Effect of whole body microwave irradiation on tumor necrosis factor production in mouse cells, Bioelectrochem. Bioenerg. 49:29–35. www.ncbi.nlm.nih.gov/pubmed/10619445

Kesari K. K. and Behari J., 2009. Microwave exposure affecting reproductive system in male rats. Appl. Biochem. Biotechnol. 162(2):416-428. www.ncbi.nlm.nih.gov/pubmed/19768389

Kesari K. K. and Behari J., 2009. Fifty-gigahertz microwave exposure effect of radiations on rat brain. Appl. Biochem. Biotechnol. 158:126-139. www.ncbi.nlm.nih.gov/pubmed/19089649

Khurana V. G. et al., 2010. Epidemiological Evidence for a Health Risk from Mobile Phone Base Stations. Int. J. Occup. Environ. Health 16:263–267. www.ncbi.nlm.nih.gov/pubmed/20662418

Maier R. et al., 2004. Effects of pulsed electromagnetic fields on cognitive processes – a pilot study on pulsed field interference with cognitive regeneration. Acta Neurologica Scandinavica 110: 46-52. www.ncbi.nlm.nih.gov/pubmed/15180806

Nittby H. et al., 2008. Cognitive impairment in rats after long-term exposure to GSM-900 mobile phone radiation. Bioelectromagnetics 29: 219-232. www.ncbi.nlm.nih.gov/pubmed/18044737

Novoselova E. G. et al., 1998. Stimulation of production of tumor necrosis factor by murine macrophages when exposed in vivo and in vitro to weak electromagnetic waves in the centimeter range Bofizika 43:1132–1333.

Novoselova E. G. et al., 1999. Microwaves and cellular immunity. II. Immunostimulating effects of microwaves and naturally occurring antioxidant nutrients. Bioelectrochem. Bioenerg. 49:37–41. www.ncbi.nlm.nih.gov/pubmed/10619446

Otitoloju A. A. et al., 2010. Preliminary study on the induction of sperm head abnormalities in mice, Mus musculus, exposed to radiofrequency radiations from Global System for Mobile Communication Base Stations. Bull. Environ. Contam. Toxicol. 84(1):51-4. www.ncbi.nlm.nih.gov/pubmed/19816647

Panagopoulos D. J.et al., 2010. Bioeffects of mobile telephony radiation in relation to its intensity or distance from the antenna. Int. J. Radiat. Biol. Vol 86(5):345-357. www.ncbi.nlm.nih.gov/pubmed/20397839

Persson B. R. R. et al., 1997. Blood-brain barrier permeability in rats exposed to electromagnetic fields used in wireless communication. Wireless Networks 3: 455-461.

Pyrpasopoulou A. et al., 2004. Bone morphogenic protein expression in newborn kidneys after prenatal exposure to radiofrequency radiation. Bioelectromagnetics 25:216-27. www.ncbi.nlm.nih.gov/pubmed/15042631

Salford L. G. et al., 2010. Effects of microwave radiation upon the mammalian blood-brain barrier. European Journal of Oncology Library Vol. 5:333-355. www.icems.eu/papers.htm?f=/c/a/2009/12/15/MNHJ1B49KH.DTL part 2.

Salford L. G., et al., 2003. Nerve cell damage in mammalian brain after exposure to microwaves from GSM mobile phones. Environ. Health Perspect. 111:881-883. www.ncbi.nlm.nih.gov/pubmed/12782486



Lees verder in de categorie Onderzoeken | Terug naar homepage | Lees de introductie