What You Need To Know About 5G Wireless and “Small” Cells
donderdag, 14 maart 2019 - Categorie: Artikelen
Bron: ehtrust.org/wp-content/uploads/5G_What-You-Need-to-Know.pdf
2019
Een overzicht met veel links naar andere publicaties, onder meer naar:
The Modeling of the Absorbance of Sub-THz Radiation by Human Skin
ieeexplore.ieee.org/document/8016593
Abstract:
In the near future, applications will come online that require data transmission in ultrahigh rates of 100 Gbit per second and beyond. In fact, the planning for new industry regulations for the exploitation of the sub-THz band are well advanced under the auspices of IEEE 802.15 Terahertz Interest Group. One aspect of this endeavor is to gauge the possible impact on human health by the expected explosion in commercial use of this band. It is, therefore, imperative to estimate the respective specific absorption rates of human tissues. In the interaction of microwave radiation and human beings, the skin is traditionally considered as just an absorbing sponge stratum filled with water. This approach is justified when the impinging wavelength is greater than the dimensions of the skin layer. However, in the sub-THz band this condition is violated. In 2008, we demonstrated that the coiled portion of the sweat duct in upper skin layer could be regarded as a helical antenna in the sub-THz band. The full ramifications of what these findings represent in the human condition are still very unclear, but it is obvious that the absorption of electromagnetic energy is governed by the topology for the skin and its organelles, especially the sweat duct.
Published in: IEEE Transactions on Terahertz Science and Technology ( Volume: 7 , Issue: 5 , Sept. 2017 )
The human skin as a sub-THz receiver – Does 5G pose a danger to it or not?
www.sciencedirect.com/science/article/pii/S0013935118300331
Highlights
• The sweat duct is regarded as a helical antenna in the sub-THz band, reflectance depends on perspiration.
• We outline the background for non-thermal effects based on the structure of sweat ducts.
• We have introduced a realistic skin EM model and found the expected SAR for the 5G standard.
Abstract
In the interaction of microwave radiation and human beings, the skin is traditionally considered as just an absorbing sponge stratum filled with water. In previous works, we showed that this view is flawed when we demonstrated that the coiled portion of the sweat duct in upper skin layer is regarded as a helical antenna in the sub-THz band. Experimentally we showed that the reflectance of the human skin in the sub-THz region depends on the intensity of perspiration, i.e. sweat duct's conductivity, and correlates with levels of human stress (physical, mental and emotional). Later on, we detected circular dichroism in the reflectance from the skin, a signature of the axial mode of a helical antenna. The full ramifications of what these findings represent in the human condition are still unclear. We also revealed correlation of electrocardiography (ECG) parameters to the sub-THz reflection coefficient of human skin. In a recent work, we developed a unique simulation tool of human skin, taking into account the skin multi-layer structure together with the helical segment of the sweat duct embedded in it. The presence of the sweat duct led to a high specific absorption rate (SAR) of the skin in extremely high frequency band. In this paper, we summarize the physical evidence for this phenomenon and consider its implication for the future exploitation of the electromagnetic spectrum by wireless communication. Starting from July 2016 the US Federal Communications Commission (FCC) has adopted new rules for wireless broadband operations above 24 GHz (5 G). This trend of exploitation is predicted to expand to higher frequencies in the sub-THz region. One must consider the implications of human immersion in the electromagnetic noise, caused by devices working at the very same frequencies as those, to which the sweat duct (as a helical antenna) is most attuned. We are raising a warning flag against the unrestricted use of sub-THz technologies for communication, before the possible consequences for public health are explored.
Keywords
5GHelical antennaHuman skin, Sub-Terahertz (sub-THz)Specific Absorption Rate (SAR)Sweat duct
Potential Risks to Human Health from Future Sub-MM Communication Systems: Paul Ben-Ishai, PhD
https://www.youtube.com/watch?v=VuVtGldYXK4
Lees verder in de categorie Artikelen | Terug naar homepage | Lees de introductie