StopUMTS Logo
how to get rid of moles 
21/09/17EHS en toch een smartphon
01/09/17WiFi vrije scholen (kaart
20/09/17IoT 5
20/09/17Harmonische vervorming
20/09/17Vitamin B17: The Greatest
19/09/17Burn-out (toename)
19/09/17Schildklierkanker, toenam
18/09/17What science knows about
Berichten Nederland
28/09/17Nieuw boek: DE DRAADLOZE
21/09/17GGD Utrecht: een nieuw ge
20/09/17Ruimte in de ether voor 5
20/09/17De Impact-Academy en onze
18/09/17Vereniging tegen de Kwakz
Berichten België
01/07/17Verdubbeling burn-out in
26/06/17Voorstel van resolutie vo
Berichten Internationaal
21/09/17USA: Monterey County Proc
20/09/17USA: nieuwe 5G ellende: D
19/09/17USA: De jongeren van nu g
19/09/17USA: 5G opponents launch
Ervaringen | Appellen/oproepen
18/09/17WiFi 2,4 GHz en 5 GHz; ee
18/09/17''Why I Don't Have a Mobi
14/09/173G naar 4G
20/09/17National Toxicology Progr
08/09/17Anxiety-like behavioural
07/09/17The mere presence of your
Veel gestelde vragen
13/05/17Vakantie? Witte zo
10/07/16Zeven veel gestelde vrage
Juridische informatie
19/09/17USA situatie: WOZ waarded
10/09/17Rechter: Staat moet lucht
31/08/17InPower Movement: Early r
29/11/17Raadsmarkt ZENDMASTEN &
11/11/17Cursus ‘Straling meten
29/09/17EHS regionale contactdage
10/06/17Brochures, folders, websi
29/04/16USA: Meer dan 50 tips voo
Briefwisselingen | Archief: 2008, 2005
10/07/17Brief naar de gemeente C.
14/06/17Mail naar 'De Monitor' na
 Fotoalbum zendmasten
 Wetenschappelijke illustraties
Adverse biological effects or damage to health from Wi-Fi signals    
Ga naar overzicht berichten in: Onderzoeken

Adverse biological effects or damage to health from Wi-Fi signals
woensdag, 16 september 2015 - Dossier: Algemeen


Papers finding adverse biological effects or damage to health from Wi-Fi signals, Wi-Fi-enabled devices or Wi-Fi frequencies (2.4 or 5 GHz).

Papers listed are those where exposures are below the current ICNIRP guideline values. If the ICNIRP values were protective, we would not be seeing the damaging effects reported in the studies below. Children are exposed to Wi-Fi/2.45GHz in schools every day, around the world. Children are sitting with Wi-Fi-enabled tablet computers on their laps and up against their bodies for prolonged periods of time. The studies below support the claim that schools giving children wireless devices to use, or exposing them to Wi-Fi signals, are failing to safeguard the health, development or wellbeing of the young people for whom they are responsible.

Papers are in alphabetical order. A file of first pages, for printing, can be found here.

Wi-Fi/2.45GHz (44):

Akar A. et al., 2013. Effects of low level electromagnetic field exposure at 2.45 GHz on rat cornea.Int J Radiat Biol. 89(4): 243-249.

Atasoy H.I. et al., 2013. Immunohistopathologic demonstration of deleterious effects on growing rat testes of radiofrequency waves emitted from conventional Wi-Fi devices. Journal of Pediatric Urology 9(2): 223-229.

Avendaño C. et al., 2012. Use of laptop computers connected to internet through Wi-Fi decreases human sperm motility and increases sperm DNA fragmentation. Fertility and Sterility 97(1): 39-45.

Aynali G. et al., 2013. Modulation of wireless (2.45 GHz)-induced oxidative toxicity in laryngotracheal mucosa of rat by melatonin. Eur Arch Otorhinolaryngol 270(5): 1695-1700.

Ceyhan A.M. 2012. Protective effects of β-glucan against oxidative injury induced by 2.45-GHz electromagnetic radiation in the skin tissue of rats. Arch Dermatol Res 304(7): 521-527.

Chaturvedi C.M. et al., 2011. 2.45GHz (CW) microwave irradiation alters circadian organization, spatial memory, DNA structure in the brain cells and blood cell counts of male mice, Mus musculus. Prog Electromag Res B 29: 23-42. (Full paper).

Chou C.K. et al., 1992. Long-term, low-level microwave irradiation of rats. Bioelectromagnetics 13(6): 469–496.

Ciftci Z.Z. et al., 2015. Effects of prenatal and postnatal exposure of Wi-Fi on development of teeth and changes in teeth element concentration in rats : Wi-Fi (2.45 GHz) and teeth element concentrations. Biol Trace Elem Res. 163(1-2): 193-201.

Cig B. and Naziroglu M. 2015. Investigation of the effects of distance from sources on apoptosis, oxidative stress and cytosolic calcium accumulation via TRPV1 channels induced by mobile phones and Wi-Fi in breast cancer cells. Biochem Biophys Acta. Epub ahead of print.

Dasdag S. et al., 2014. Effect of long-term exposure of 2.4 GHz radiofrequency radiation emitted from Wi-Fi equipment on testes functions. Electromagn Biol Med. 34(1): 37-42.

Dasdag S. et al 2015. Effects of 2.4 GHz radiofrequency radiation emitted from Wi-Fi equipment on microRNA expression in brain tissue. Int J Radiat Biol. Epub ahead of print.

Desmunkh P.S. et al., 2013. Detection of Low Level Microwave Radiation Induced Deoxyribonucleic Acid Damage Vis-a-vis Genotoxicity in Brain of Fischer Rats. Toxicol Int. 20(1): 19-24.

Deshmukh P.S. et al., 2015. Cognitive impairment and neurogenotoxic effects in rats exposed to low-intensity microwave radiation. Int J. Toxicol. Epub ahead of print.

Eser O., 2013. The effect of electromagnetic radiation on the rat brain: an experimental study. Turk Neurosurg. 23(6): 707-715.

Ghazizadeh V. and Naziroglu M. 2014. Electromagnetic radiation (Wi-Fi) and epilepsy induce calcium entry and apoptosis through activation of TRPV1 channel in hippocampus and dorsal root ganglion of rats. Metab Brain Dis. 29(3): 787-799.

Grigoriev Y.G. et al., 2010. Confirmation studies of Soviet research on immunological effects of microwaves: Russian immunology results. Bioelectromagnetics 31(8):589-602.

Gumral N. et al., 2009. Effects of selenium and L-carnitine on oxidative stress in blood of rat induced by 2.45-GHz radiation from wireless devices. Biol Trace Elem Res. 132(1-3): 153-163.

Gürler H.S. et al, 2014. Increased DNA oxidation (8-OHdG) and protein oxidation (AOPP) by Low level electromagnetic field (2.45 GHz) in rat brain and protective effect of garlic. Int. J. Radiat. Biol. 90(10): 892-896.

Havas M. et al., 2010. Provocation study using heart rate variability shows microwave radiation from 2.4GHz cordless phone affects autonomic nervous system. European Journal of Oncology Library Vol. 5: 273-300. part 2.

Kesari K.K. et al., 2010. Mutagenic response of 2.45 GHz radiation exposure on rat brain. Int J Radiat Biol. 86(4): 334-343.

Kesari K.K. et al., 2012. Pathophysiology of microwave radiation: effect on rat brain. Appl Biochem Biotechnol. 166(2): 379-388.

Kumar S. et al., 2011. The therapeutic effect of a pulsed electromagnetic field on the reproductive patterns of male Wistar rats exposed to a 2.45-GHz microwave field. Clinics (Sao Paulo) 66(7): 1237-1245.

Maganioti A. E. et al., 2010. Wi-Fi electromagnetic fields exert gender related alterations on EEG. 6th International Workshop on Biological Effects of Electromagnetic fields. Paper.

Margaritis L.H. et al., 2014. Drosophila oogenesis as a bio-marker responding to EMF sources. Electromagn Biol Med. 33(3): 165-189.

Meena R. et al., 2014. Therapeutic approaches of melatonin in microwave radiations-induced oxidative stress-mediated toxicity on male fertility pattern of Wistar rats. Electromagn Biol Med. 33(2): 81-91.

Misa-Augustiño M.J. et al., 2012. Electromagnetic fields at 2.45 GHz trigger changes in heat shock proteins 90 and 70 without altering apoptotic activity in rat thyroid gland. Biol Open 1(9): 831-839.

Naziroğlu M. and Gumral N. 2009. Modulator effects of L-carnitine and selenium on wireless devices (2.45 GHz)-induced oxidative stress and electroencephalography records in brain of rat. Int J Radiat Biol. 85(8): 680-689.

Nazıroğlu M. et al., 2012. 2.45-Gz wireless devices induce oxidative stress and proliferation through cytosolic Ca2+ influx in human leukemia cancer cells. International Journal of Radiation Biology 88(6): 449–456.

Nazıroğlu M. et al., 2012b. Melatonin modulates wireless (2.45 GHz)-induced oxidative injury through TRPM2 and voltage gated Ca(2+) channels in brain and dorsal root ganglion in rat. Physiol Behav. 105(3): 683-92.

Ozorak A. et al., 2013. Wi-Fi (2.45 GHz)- and mobile phone (900 and 1800 MHz)- induced risks on oxidative stress and elements in kidney and testis of rats during pregnancy and the development of offspring. Biol. Trace Elem. Res. 156(103): 221-29.

Oksay T. et al., 2012. Protective effects of melatonin against oxidative injury in rat testis induced by wireless (2.45 GHz) devices. Andrologia doi: 10.1111/and.12044, Epub ahead of print.

Papageorgiou C. C. et al., 2011. Effects of Wi-Fi signals on the p300 component of event-related potentials during an auditory hayling task. Journal of Integrative Neuroscience 10(2): 189-202.

Paulraj R. and Behari J. 2006. Single strand DNA breaks in rat brain cells exposed to microwave radiation. Mutat Res. 596(1-2): 76-80.

Paulraj R. and Behari J. 2006b. Protein kinase C activity in developing rat brain cells exposed to 2.45 GHz radiation. Electromagn Biol Med. 25(1): 61-70.

Salah M.B. et al., 2013. Effects of olive leave extract on metabolic disorders and oxidative stress induced by 2.45 GHz WIFI signals. Environ Toxicol Pharmacol 36(3): 826-834.

Sangun O. et al., 2015. The effects of long-term exposure to a 2450 MHz electromagnetic field on growth and pubertal development in female Wistar rats. Electromagn. Biol. Med. 34(1): 63-67.

Senavirathna M.D., et al., 2014. Nanometer-scale elongation rate fluctuations in the Myriophyllum aquaticum (Parrot feather) stem were altered by radio-frequency electromagnetic radiation. Plant Signal Behav. 9(4): e28590.

Shahin S. et al., 2013. 2.45 GHz Microwave Irradiation-Induced Oxidative Stress Affects Implantation or Pregnancy in Mice, Mus musculus. Appl Biochem Biotechnol 169: 1727–1751.

Shahin S. et al., 2014. Microwave irradiation adversely affects reproductive function in male mouse, Mus musculus, by inducing oxidative and nitrosative stress. Free Radic Res. 48(5): 511- 525.

Sinha R.K. 2008. Chronic non-thermal exposure of modulated 2450 MHz microwave radiation alters thyroid hormones and behavior of male rats. Int J Radiat Biol. 84(6): 505-513.

Somosy Z. et al., 1991. Effects of modulated and continuous microwave irradiation on the morphology and cell surface negative charge of 3T3 fibroblasts. Scanning Microsc. 5(4): 1145-1155.

Soran M.-L. et al., 2014. Influence of microwave frequency electromagnetic radiation on terpene emission and content in aromatic plants. J Plant Physiol. 171(15): 1436-1443.

Tök L. et al., 2014. Effects of melatonin on Wi-Fi-induced oxidative stress in lens of rats. Indian Journal of Opthalmology 62(1): 12-15.

Türker Y. et al., 2011. Selenium and L-carnitine reduce oxidative stress in the heart of rat induced by 2.45-GHz radiation from wireless devices. Biol Trace Elem Res. 143(3): 1640-1650.

A few more studies of similar microwave frequencies at low exposures (6V/m or below):

(Not comprehensive)

Balmori A. 2010. Mobile phone mast effects on common frog (Rana temporaria) tadpoles: the city turned into a laboratory. Electromagn. Biol. Med. 29(1-2):31-35.

Erdinc O. O. et al., 2003. Electromagnetic waves of 900MHz in acute pentylenetetrazole model in ontogenesis in mice. Neurol. Sci. 24:111-116.

Fesenko E. E. et al., 1999. Stimulation of murine natural killer cells by weak electromagnetic waves in the centimeter range. Biofizika 44:737–741.

Fesenko E. E. et al., 1999. Microwaves and cellular immunity. I. Effect of whole body microwave irradiation on tumor necrosis factor production in mouse cells, Bioelectrochem. Bioenerg. 49:29–35.

Kesari K. K. and Behari J., 2009. Microwave exposure affecting reproductive system in male rats. Appl. Biochem. Biotechnol. 162(2):416-428.

Kesari K. K. and Behari J., 2009. Fifty-gigahertz microwave exposure effect of radiations on rat brain. Appl. Biochem. Biotechnol. 158:126-139.

Khurana V. G. et al., 2010. Epidemiological Evidence for a Health Risk from Mobile Phone Base Stations. Int. J. Occup. Environ. Health 16:263–267.

Maier R. et al., 2004. Effects of pulsed electromagnetic fields on cognitive processes – a pilot study on pulsed field interference with cognitive regeneration. Acta Neurologica Scandinavica 110: 46-52.

Nittby H. et al., 2008. Cognitive impairment in rats after long-term exposure to GSM-900 mobile phone radiation. Bioelectromagnetics 29: 219-232.

Novoselova E. G. et al., 1998. Stimulation of production of tumor necrosis factor by murine macrophages when exposed in vivo and in vitro to weak electromagnetic waves in the centimeter range Bofizika 43:1132–1333.

Novoselova E. G. et al., 1999. Microwaves and cellular immunity. II. Immunostimulating effects of microwaves and naturally occurring antioxidant nutrients. Bioelectrochem. Bioenerg. 49:37–41.

Otitoloju A. A. et al., 2010. Preliminary study on the induction of sperm head abnormalities in mice, Mus musculus, exposed to radiofrequency radiations from Global System for Mobile Communication Base Stations. Bull. Environ. Contam. Toxicol. 84(1):51-4.

Panagopoulos D. al., 2010. Bioeffects of mobile telephony radiation in relation to its intensity or distance from the antenna. Int. J. Radiat. Biol. Vol 86(5):345-357.

Persson B. R. R. et al., 1997. Blood-brain barrier permeability in rats exposed to electromagnetic fields used in wireless communication. Wireless Networks 3: 455-461.

Pyrpasopoulou A. et al., 2004. Bone morphogenic protein expression in newborn kidneys after prenatal exposure to radiofrequency radiation. Bioelectromagnetics 25:216-27.

Salford L. G. et al., 2010. Effects of microwave radiation upon the mammalian blood-brain barrier. European Journal of Oncology Library Vol. 5:333-355. part 2.

Salford L. G., et al., 2003. Nerve cell damage in mammalian brain after exposure to microwaves from GSM mobile phones. Environ. Health Perspect. 111:881-883.

Ga terug naar het hoofdmenu
Afdrukken | Vragen | RSS | Disclaimer