StopUMTS Logo
how to get rid of moles 
Zoeken
   
Voorlichting
06/11/17Beschermen tegen de ra
12/10/17Meetspecialisten, meet
Artikelen
18/11/17Vuile stroom (netvervuili
16/11/17ADHD is meer een probleem
16/11/17Mobile phones cause letha
16/11/17Mt Nardi Wildlife Report
15/11/17Cell Phone Headaches –
14/11/1715.000 wetenschappers uit
Berichten Nederland
19/11/17De iPad-school van Mauric
18/11/17KWF collecteert met stral
16/11/17Promotie van een psycholo
16/11/17Toename van klachten in N
14/11/17Aantal antenne-installati
Berichten België
14/11/17Hoe gezond of ongezond is
24/10/17NMBS-baas Sophie Dutordoi
Berichten Internationaal
18/11/17IARC-WHO: Global burden o
18/11/17Duits verbod op 'slimme'
14/11/17De stralingsbelasting en
09/11/17Bill Gates and Steve Jobs
Ervaringen | Appellen/oproepen
17/11/17Alice kan niet tegen stra
12/11/17Afscherming, voor sommige
05/11/17TV met WiFi; een ervaring
Onderzoeken
14/11/17Modeled and Perceived Exp
06/11/17Decreases in sleep durati
25/10/17Radiation from wireless t
Veel gestelde vragen
13/05/17Vakantie? Witte zo
10/07/16Zeven veel gestelde vrage
Juridische informatie
08/11/17InPower Movement: Early r
19/10/17The precautionary princip
11/10/17Telekom warns of (its own
Oproepen
29/11/17Raadsmarkt ZENDMASTEN &
11/11/17Cursus ‘Straling meten
29/10/17Petitie: Geen uitbreiding
Folders
10/09/17Brochures, folders, websi
29/04/16USA: Meer dan 50 tips voo
Briefwisselingen | Archief: 2008, 2005
10/07/17Brief naar de gemeente C.
14/06/17Mail naar 'De Monitor' na
Illustraties
 Algemeen
 Fotoalbum zendmasten
 Wetenschappelijke illustraties
Korea: Effrecten van LF EMV op stam cellen in beenmerg    
Ga naar overzicht berichten in: Onderzoeken

Korea: Effrecten van LF EMV op stam cellen in beenmerg
donderdag, 05 december 2013 - Dossier: Algemeen


Bron: www.ncbi.nlm.nih.gov/pubmed/23970408?dopt=Abstract .
1 aug. 2013


Exp Biol Med (Maywood). 2013 Aug 1;238(8):923-31.

Extremely low-frequency electromagnetic fields induce neural differentiation in bone marrow derived mesenchymal stem cells.

Kim HJ, Jung J, Park JH, Kim JH, Ko KN, Kim CW.

School of Life Sciences and Biotechnology, Korea University, Seoul 136-701, Korea.

Abstract
Extremely low-frequency electromagnetic fields (ELF-EMF) affect numerous biological functions such as gene expression, cell fate determination and even cell differentiation. To investigate the correlation between ELF-EMF exposure and differentiation, bone marrow derived mesenchymal stem cells (BM-MSCs) were subjected to a 50-Hz electromagnetic field during in vitro expansion. The influence of ELF-EMF on BM-MSCs was analysed by a range of different analytical methods to understand its role in the enhancement of neural differentiation. ELF-EMF exposure significantly decreased the rate of proliferation, which in turn caused an increase in neuronal differentiation. The ELF-EMF-treated cells showed increased levels of neuronal differentiation marker (MAP2), while early neuronal marker (Nestin) was down-regulated. In addition, eight differentially expressed proteins were detected in two-dimensional electrophoresis maps, and were identified using ESI-Q-TOF LC/MS/MS. Among them, ferritin light chain, thioredoxin-dependent peroxide reductase, and tubulin β-6 chain were up-regulated in the ELF-EMF-stimulated group. Ferritin and thioredoxin-dependent peroxide reductase are involved in a wide variety of functions, including Ca(2+) regulation, which is a critical component of neurodegeneration. We also observed that the intracellular Ca(2+) content was significantly elevated after ELF-EMF exposure, which strengthens the modulatory role of ferritin and thioredoxin-dependent peroxide reductase, during differentiation. Notably, western blot analysis indicated significantly increased expression of the ferritin light chain in the ELF-EMF-stimulated group (0.60 vs. 1.08; P < 0.01). These proteins may help understand the effect of ELF-EMF stimulation on BM-MSCs during neural differentiation and its potential use as a clinically therapeutic option for treating neurodegenerative diseases.

KEYWORDS:
BM-MSCs, Ca2+ regulation, Extremely low-frequency electromagnetic fields, ferritin, neural differentiation
PMID: 23970408 (PubMed - in process)


Ga terug naar het hoofdmenu
Afdrukken | Vragen | RSS | Disclaimer