StopUMTS Logo
how to get rid of moles 
Zoeken
   
Voorlichting
19/04/18Metaalkeuze ter behoeve v
08/03/18Boeken over EMV / stralin
Artikelen
21/04/18Report on National Toxico
20/04/18COMPILATIE: Maatregelen v
20/04/18Vaccins: International sc
19/04/18Scientific Research On 5G
16/04/18Deadly common combo produ
13/04/18Can Cell Phones Cause Fem
Berichten Nederland
21/04/18It’ers breken via web i
21/04/18Grote groei mobiele netwe
20/04/18Gezondheidsraad: Hoogspan
19/04/18Informatieavond over zend
16/04/18(Press release) Phonegate
Berichten België
03/04/18Teken de petitie tegen ve
29/03/18Huidkanker: “België he
Berichten Internationaal
22/04/18Scientific Hearing At The
19/04/18Huawei boss warns the pot
17/04/18Bulging Debt May Spell Tr
15/04/18Huidkanker: Incidentie in
Ervaringen | Appellen/oproepen
20/04/18Skin Cancer, Cell phones
14/04/18Video over straling thuis
11/04/185G en LED verlichting; sl
Onderzoeken
13/04/18Electromagnetic radiation
11/04/18Semi-quantitative proteom
26/03/18Aggressive Brain Tumors o
Veel gestelde vragen
13/05/17Vakantie? Witte zo
10/07/16Zeven veel gestelde vrage
Juridische informatie
02/03/18Formal Complaint to the E
26/02/185G From Space & Santa Fe
23/01/18Reeks publicaties op juri
Oproepen
19/04/18Lezing: Smartphones, WiFi
07/04/18EHS Uitnodiging landelijk
29/03/18Bijeenkomst Klankbordgroe
Folders
10/09/17Brochures, folders, websi
29/04/16USA: Meer dan 50 tips voo
Briefwisselingen | Archief: 2008, 2005
05/04/18Brief naar Monique Beerla
04/04/18Volkskrant: e-mail naar d
Illustraties
 Algemeen
 Fotoalbum zendmasten
 Wetenschappelijke illustraties
Korea: Effrecten van LF EMV op stam cellen in beenmerg    
Ga naar overzicht berichten in: Onderzoeken

Korea: Effrecten van LF EMV op stam cellen in beenmerg
donderdag, 05 december 2013 - Dossier: Algemeen


Bron: www.ncbi.nlm.nih.gov/pubmed/23970408?dopt=Abstract .
1 aug. 2013


Exp Biol Med (Maywood). 2013 Aug 1;238(8):923-31.

Extremely low-frequency electromagnetic fields induce neural differentiation in bone marrow derived mesenchymal stem cells.

Kim HJ, Jung J, Park JH, Kim JH, Ko KN, Kim CW.

School of Life Sciences and Biotechnology, Korea University, Seoul 136-701, Korea.

Abstract
Extremely low-frequency electromagnetic fields (ELF-EMF) affect numerous biological functions such as gene expression, cell fate determination and even cell differentiation. To investigate the correlation between ELF-EMF exposure and differentiation, bone marrow derived mesenchymal stem cells (BM-MSCs) were subjected to a 50-Hz electromagnetic field during in vitro expansion. The influence of ELF-EMF on BM-MSCs was analysed by a range of different analytical methods to understand its role in the enhancement of neural differentiation. ELF-EMF exposure significantly decreased the rate of proliferation, which in turn caused an increase in neuronal differentiation. The ELF-EMF-treated cells showed increased levels of neuronal differentiation marker (MAP2), while early neuronal marker (Nestin) was down-regulated. In addition, eight differentially expressed proteins were detected in two-dimensional electrophoresis maps, and were identified using ESI-Q-TOF LC/MS/MS. Among them, ferritin light chain, thioredoxin-dependent peroxide reductase, and tubulin β-6 chain were up-regulated in the ELF-EMF-stimulated group. Ferritin and thioredoxin-dependent peroxide reductase are involved in a wide variety of functions, including Ca(2+) regulation, which is a critical component of neurodegeneration. We also observed that the intracellular Ca(2+) content was significantly elevated after ELF-EMF exposure, which strengthens the modulatory role of ferritin and thioredoxin-dependent peroxide reductase, during differentiation. Notably, western blot analysis indicated significantly increased expression of the ferritin light chain in the ELF-EMF-stimulated group (0.60 vs. 1.08; P < 0.01). These proteins may help understand the effect of ELF-EMF stimulation on BM-MSCs during neural differentiation and its potential use as a clinically therapeutic option for treating neurodegenerative diseases.

KEYWORDS:
BM-MSCs, Ca2+ regulation, Extremely low-frequency electromagnetic fields, ferritin, neural differentiation
PMID: 23970408 (PubMed - in process)


Ga terug naar het hoofdmenu
Afdrukken | Vragen | RSS | Disclaimer