StopUMTS Logo
how to get rid of moles 
Zoeken
   
Voorlichting
06/11/17Beschermen tegen de ra
12/10/17Meetspecialisten, meet
Artikelen
20/11/17E-smog Stress im Auto
18/11/17Vuile stroom (netvervuili
16/11/17ADHD is meer een probleem
16/11/17Mobile phones cause letha
16/11/17Mt Nardi Wildlife Report
15/11/17Cell Phone Headaches –
Berichten Nederland
19/11/17De iPad-school van Mauric
18/11/17KWF collecteert met stral
16/11/17Promotie van een psycholo
16/11/17Toename van klachten in N
14/11/17Aantal antenne-installati
Berichten België
14/11/17Hoe gezond of ongezond is
24/10/17NMBS-baas Sophie Dutordoi
Berichten Internationaal
18/11/17IARC-WHO: Global burden o
18/11/17Duits verbod op 'slimme'
14/11/17De stralingsbelasting en
09/11/17Bill Gates and Steve Jobs
Ervaringen | Appellen/oproepen
17/11/17Alice kan niet tegen stra
12/11/17Afscherming, voor sommige
05/11/17TV met WiFi; een ervaring
Onderzoeken
21/11/17Computerspiele wie ''Worl
19/11/17Microwaves in the cold wa
14/11/17Modeled and Perceived Exp
Veel gestelde vragen
13/05/17Vakantie? Witte zo
10/07/16Zeven veel gestelde vrage
Juridische informatie
08/11/17InPower Movement: Early r
19/10/17The precautionary princip
11/10/17Telekom warns of (its own
Oproepen
29/11/17Raadsmarkt ZENDMASTEN &
11/11/17Cursus ‘Straling meten
29/10/17Petitie: Geen uitbreiding
Folders
10/09/17Brochures, folders, websi
29/04/16USA: Meer dan 50 tips voo
Briefwisselingen | Archief: 2008, 2005
10/07/17Brief naar de gemeente C.
14/06/17Mail naar 'De Monitor' na
Illustraties
 Algemeen
 Fotoalbum zendmasten
 Wetenschappelijke illustraties
Ten gigahertz microwave radiation impairs spatial memory, ... of developing mice brain    
Ga naar overzicht berichten in: Onderzoeken

Ten gigahertz microwave radiation impairs spatial memory, ... of developing mice brain
donderdag, 11 mei 2017 - Dossier: Algemeen


Bron: www.ncbi.nlm.nih.gov/pubmed/28470342
Mol Cell Biochem. 2017 May 3. doi: 10.1007/s11010-017-3051-8. (Epub ahead of print)

Ten gigahertz microwave radiation impairs spatial memory, enzymes activity, and histopathology of developing mice brain

Sharma A 1, Kesari KK 2,3, Saxena VK 4, Sisodia R 1.

1. Neurobiology Laboratory, Department of Zoology, University of Rajasthan, Jaipur, India.
2. School of Life and Basic Sciences, Jaipur National University, Jaipur, Rajasthan, India. kavindra_biotech@yahoo.co.in.
3. Department of Neurobiology, A.I. Virtanen Institute, University of Eastern Finland, Neulaniementie 2, Kuopio, Finland. kavindra_biotech@yahoo.co.in.
4. Department of Physics, University of Rajasthan, Jaipur, India.

Abstract
For decades, there has been an increasing concern about the potential hazards of non-ionizing electromagnetic fields that are present in the environment and alarming as a major pollutant or electro-pollutant for health risk and neuronal diseases. Therefore, the objective of the present study was to explore the effects of 10 GHz microwave radiation on developing mice brain. Two weeks old mice were selected and divided into two groups (i) sham-exposed and (ii) microwave-exposed groups. Animals were exposed for 2 h/day for 15 consecutive days. After the completion of exposure, within an hour, half of the animals were autopsied immediately and others were allowed to attain 6 weeks of age for the follow-up study. Thereafter results were recorded in terms of various biochemical, behavioral, and histopathological parameters. Body weight result showed significant changes immediately after treatment, whereas non-significant changes were observed in mice attaining 6 weeks of age. Several other endpoints like brain weight, lipid peroxidation, glutathione, protein, catalase, and superoxide dismutase were also found significantly (p < 0.05) altered in mice whole brain. These significant differences were found immediately after exposure and also in follow-up on attaining 6 weeks of age in microwave exposure group. Moreover, statistically significant (p < 0.001) effect was investigated in spatial memory of the animals, in learning to locate the position of platform in Morris water maze test. Although in probe trial test, sham-exposed animals spent more time in searching for platform into the target quadrant than in opposite or other quadrants. Significant alteration in histopathological parameters (qualitative and quantitative) was also observed in CA1 region of the hippocampus, cerebral cortex, and ansiform lobule of cerebellum. Results from the present study concludes that the brain of 2 weeks aged mice was very sensitive to microwave exposure as observed immediately after exposure and during follow-up study at 6 weeks of age.

KEYWORDS:
CA1 region; Hippocampus; Microwaves; Morris water maze; Protein

Excerpt

The maximum power density 0.25 mW/cm2 was recorded at the near field distance from the horn antenna. A power meter measured the emitted power of microwaves, which was a peak sensitive device ... The whole body specific absorption rate (SAR) was estimated to be 0.1790 W/kg ... Similar experiment with same number of sham-exposed animals was performed without energizing the microwave exposure system.


Ga terug naar het hoofdmenu
Afdrukken | Vragen | RSS | Disclaimer